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Analysis of Data in Square Contingency
Tables with Ordered Categories Using the
Conditional Symmetry Model and its
Decomposed Models
by Sadao Tomizawa*

For the analysis of square contingency tables with ordered categories, three kinds of decompositions
for the conditional symmetry model derived by Tomizawa are simply described. Using the conditional
symmetry model and its decomposed models, this paper analyzes the data of unaided distance vision of
women in Britain first analyzed by Stuart, the data of unaided distance vision of students in a university
in Japan, and the data of unaided distance vision of pupils at elementary schools at a city in Tokyo.

Introduction
Table 1 is constructed from the data of the unaided

distance vision of 7477 women aged 30-39 employed in
Royal Ordnance factories in Britain from 1943 to 1946.
The data in Table 1 were first analyzed by Stuart (1,2).
Table 2 is constructed from the data of the unaided
distance vision of 4746 students aged 18 to about 25,
including about 10% of the women of the Faculty of
Science and Technology, Science University of Tokyo
in Japan examined in April, 1982. Table 3 is constructed
from the data of the unaided distance vision of 3168
pupils aged 6-12, including about half the girls at ele-
mentary schools in Tokyo, Japan examined in June 1984.
In Tables 1, 2, and 3 the row variable is the right eye
grade and the column variable is the left eye grade with
the categories ordered from the lowest grade (1) to the
highest grade (4).
To the data of Tables 1, 2, and 3 it is reasonable to

Table 1. Unaided distance vision of 7477 women aged 30-39
employed in Royal Ordnance factories from 1943 to 1946.

Left eye grade
Lowest Second Third Highest

Right eye grade (1) (2) (3) (4) Total
Lowest (1) 492 179 82 36 789
Second (2) 205 1772 362 117 2456
Third (3) 78 432 1512 234 2256
Highest (4) 66 124 266 1520 1976

Total 841 2507 2222 1907 7477

*Department of Information Sciences, Faculty of Science and Tech-
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Table 2. Unaided distance vision of 4746 students aged 18 to
about 25 including about 10% women in Faculty of Science and
Technology, Science University of Tokyo in Japan examined in

April 1982.

Left eye grade
Lowest Second Third Highest

Right eye grade (1) (2) (3) (4) Total
Lowest (1) 1429 249 25 20 1723
Second (2) 185 660 124 64 1033
Third (3) 23 114 221 149 507
Highest (4) 22 40 130 1291 1483
Total 1659 1063 500 1524 4746

apply models of various kinds of symmetry instead of
the statistical independence model. To analyze the data
of square contingency tables, the models of symmetry,
quasisymmetry and marginal homogeneity are de-
scribed, for example, in Bishop, Fienberg, and Holland
(3), Caussinus (4), and Stuart (2). Caussinus (4) also
noted that the symmetry model holds if and only if both
quasisymmetry model and marginal homogeneity model
hold. McCullagh (5) proposed a conditional symmetry
model which is an extension of the symmetry model.
Tomizawa (6) derived three kinds of decompositions for
the conditional symmetry model. Wall and Lienert (7)
proposed a point-symmetry model in J-dimensional con-
tingency cubes. Tomizawa (8,9) proposed models of var-
ious kinds of point symmetry in two-dimensional con-
tingency tables and gave their decompositions.

In this paper we analyze the data in Tables 1, 2, and
3 using the conditional symmetry model and its decom-
posed models.
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Table 3. Unaided distance vision of 3168 pupils aged 6-12
including about half girls at elementary schools in Tokyo

examined in June 1984.

Left eye grade
Lowest Second Third Highest

Right eye grade (1) (2) (3) (4) Total
Lowest (1) 92 16 7 12 127
Second (2) 15 75 42 10 142
Third (3) 5 33 138 96 272
Highest (4) 10 21 126 2470 2627
Total 122 145 313 2584 3168

Models and Decompositions

Consider the square a x a contingency table with
row variate denoted by X1 and column variate denoted
by X2. Let pij denote the probability in the cell in row
i and column j for 1 -i-£i a.
The models of symmetry, quasisymmetry and mar-

ginal homogeneity are defined as follows:

where ai > O, bj > O, dij > O

dij = ydji for1 -i<ji a

a a

HI a, = l b, = 1
1=1 1=1

a

rH (di, Idj) = ya+1-(i+j)
1=1

and where the parameter y is unspecified. This model
is also equivalent to the model

HQ*: PijPjkPki = YPjiPkjPik for 1 i < j < k - a

where the parameter y is unspecified. Model H* is also
expressed by a log-linear model for the pii in Tomizawa
(6). A special case of model H4 obtained by putting y
= 1 is the quasisymmetry model.
We introduce two kinds of modified marginal homo-

geneity models as follows:

Hs: pij pPji
HQ: pij = aibjdij

for 1 - i < j - a
for 1 - i,j S a

Hm*: P+- = BP- for 1 £i sa - 1

where the parameter 8 is unspecified and where

where ai > O, bj > O, dij > O, and dij = dj-;

for 1 - i - a

a

Pi+ = Pr(Xl = i, X1 < X2) = -2 Pit

a

pi =Pr(X2 = i, X1 > X2) = I Pli

HM2*: P4 = SP*

and
a

P-i= APli

McCullagh's (5) conditional symmetry model is defined
by

(Dij (i < j)
HS*: Pij = , (Dii (i = j)

t (2 - 0) bij (i >

where the parameter 8 is unspecified and where

i-l

p
t = Pr(X2 = i, X1 < X2) = Pui

i-1

p- = Pr(Xj = i, X1 > X2) = ii

We define the extended marginal homogeneity model
by

HM*: go = p.) for 1 - i - a

where F,ij = O>i and II0ij = 1. This model can be also
expressed by a log-linear model for the pij in Tomizawa
(6).
We next define the extended quasisymmetry model

by

for 1 - i,j - a

where the parameter 8 is unspecified and where

p()= 8Pi + pii + pi+ andp( p+ + Pii + 8pi.

Model HM3 indicates that the row marginal totals
summed by multiplying the probabilities for the cells in
the lower-left triangle of the a x a table by a common
weight 8 are equal to the column marginal totals

HM: pi. pi
where

a

Pi. = Pii for 2 - i - a
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summed by the same way. Model HM3 also has the prop-
erty that under HM3 the parameter 8 ¢ 1 is equivalent
to Pr(X :,i) Pr(X2 S i) for every i. A special case
of model HM3 obtained by putting 8 = 1 is the marginal
homogeneity model.

Finally let

R = (){PiiPkPki1(PiiPkiPik)I1

and introduce three kinds of average models as follows:

HR : R = A1

where
a - 1

A1 = 2 (p+/lp. )/(a - 1)
z= 1

HR2: R = A2

a

A2 = 2(p.7ilp -)I(a - 1)where

HR*3: R = A3

a) where Xt;x, = N, and let mij denote the corre-
sponding expected frequency under some model. We
assume here that a multinomial distribution applies to
thp a x a. t.ah1p
The degrees of freedom for models HS, HQ, Hf,I Hj

(1 = 1,2,3) and HM,(l = 1,2) are (a - 2) (a + 1)/2,
a(a - 3)/2, a - 2, 1, and a - 1, respectively.

The maximum likelihood estimates of mij under model
HQ can be sought by the iterative procedure in Tomizawa
(6) or by the following iterative procedure: as the (k + 1)-
th step

(k+l) =
Mij

- (k) F kixjxij + xji
Mij - Wipn(N){ aik) + (}J

F D dii/4 (1 - d,i +)/4

x LD(k) E(k)

where the initial values are m-9= 1 for 1 < ij - a and
where

a

Xi.== Xi

a

x.j = X j

A3 = (Pl-P.l + p.lpa/)P2

Here R indicates the average of ratio PijPjkPkil(PjiPkjPik)
for 1 S i < j < k - a in the case that the ratio parameter
y in HQ changes according to each ratio, and Al indicates
the average ofp iJp . i for 1 - i - a - 1 in the case that
the ratio parameter 8 in HM1 changes according to each
ratio, and also A2 iS interpreted similarly, and A3 indi-
cates the average of two ratios in the case that the ratio
p',Jp.-pis not always* equal to the ratio P.a/
p a..Therefore model HRI for 1 = 1, 2, and 3 indicates
the equilibrium of two kinds of averages R and Al.
We get the decompositions for model as follows.
THEOREM: for = 1, 2 and 3, model HS holds if and

only if all models HQ, HMI and HRI hold.
The proof of this theorem is given by Tomizawa (6).
We denote special cases of models HMI(l = 1,2) ob-

tained by putting 8 = 1 by HMI (1 = 1,2). Then we get
new decompositions for model HS as follows:
COROLLARY: for 1 = 1 and 2, model HS holds if and

only if both models HQ and HMI hold.

Degrees of Freedom, Estimation,
and Test
Let xij denote the observed frequency in the ith row

and jth column of the a x a contingency table (1 - i,j

a

- k) = enk

dij = {a + 1 - (j - i)}/(a - 2) (i < j)

d = 1/2 (i j)

D = (a - 2)N + ,I>x{a - 2(j - i)}

2<_3

E = 2(a - 2)N - D

D(k) = (a - 2) zm-4k) + j?'jk) {a - 2(j - 2)}

E(k) = 2(a - 2) zi4k) - D(k)

Thus the goodness of fit of models HS, HQ, HMI and
HMI,( = 1,2) can be tested by the Pearson's or the like-
lihood-ratio chi-squared statistics. The goodness of fit of
model HM3 can be tested by test statistic XM32 in Tomi-
zawa (6).

where
a

m- k) Amk

237



S. TOMIZAWA

Table 4. Chi-square for symmetry models applied to the data
in Table 1.

Symmetry Degrees of Likelihood-ratio Pearson's
models freedom chi-square chi-square

HS 6 19.25 19.11
HQ 3 7.27 7.26
HM1 3 11.97 11.96
HM2 3 11.99 11.97
Ht 5 7.35 7.26
HZ 2 6.82 6.78
Hm* 1 2 0.08 0.08
H,& 2 0.09 0.09

Table 5. Chi-square for symmetry models applied to the data in
Table 2.

Symmetry Degrees of Likelihood-ratio Pearson's
models freedom chi-square chi-square

HS 6 16.95 16.87
HQ 3 5.71 5.78
HM1 3 12.52 12.49
HM2 3 13.94 13.90
Ht 5 4.98 4.97
HQ 2 4.41 4.39
HE~j 2 0.54 0.54
Hm* 2 1.96 1.96

Table 6. Chi-square for symmetry models applied to the data in
Table 3.

Symmetry Degrees of Likelihood-ratio Pearson's
models freedom chi-square chi-square
HS 6 9.69 9.58
HQ 3 2.81 2.75
HM1 3 4.49 4.48
HM2 3 6.98 6.95
H*S 5 7.83 7.77
HQ 2 2.61 2.57
ff*j 2 2.63 2.63
HM2w* 2 5.12 5.12

Analysis of Table 1
Table 4 presents the likelihood-ratio and the Pear-

son's chi-squared statistics obtained by applying the
models introduced in the previous section to the data
in Table 1. The value of test statistic Q in Stuart (2) for
testing the goodness of fit of model HM is 11.96 with 3
degrees of freedom. The value of test statistic XM3 in
Tomizawa (6) for testing the goodness of fit of the ex-
tended marginal homogeneity model HM3 is 0.005 with
2 degrees of freedom. From these values and Table 4,
none of models HMt, HM2, and HM fits the data well,
but all of models HMl, HM2, and HM3 fit the data very
well. Moreover the maximum likelihood estimates of 8
under models HM1 and HM2 are 0.863. Since this value
is less than one, we can say that the left eye is worse
than the right eye. Also the values of chi-square under
model HQ lie between the upper 5% and 1% tail values
of the x2 distribution with 2 degrees of freedom. Under
model HQ the estimated value of -y obtained by maxi-

mum likelihood is 0.929. Also model HS does not fit the
data well, and thus the left eye is not symmetric to the
right eye. But model Hs fits adequately and the esti-
mated values of mij/mjli for 1 i < j S 4 under model
HS are 0.863. Since this value is less than one, we can
say again that the left eye is worse than the right eye.

Analysis of Table 2
Table 5 presents the likelihood-ratio and the Pear-

son's chi-squared statistics obtained by applying various
kinds of symmetry models to the data in Table 2. The
value of test statistic Q in Stuart (2) for testing the
goodness of fit of model HM is 11.21 with 3 degrees of
freedom. This value lies between the upper 5% and 1%
tail values of the x2 distribution with 3 degrees of free-
dom. The value of test statistic X32 in Tomizawa (6)
for testing the goodness of fit of the extended marginal
homogeneity model HM3 is 0.56 with 2 degrees of free-
dom. From this value and Table 5, neither model H
nor model H,V2 fits the data well but all of models HM1,
HM2, and HM3 fit the data very well. Moreover the
maximum likelihood estimates of 8 under models HM1
and HM2 are 1.228, and since this value is greater than
one, this value indicates that the left eye is better than
the right eye. Both models*HQ and HQ also fit ade-
quately, and under model HQ the estimated value of y
obtained by maximum likelihood is 1.208. Also, since
model HS does not fit the data well, the left eye is not
symmetric to the right eye. But model HS fits the data
well, and the estimated values of mij/mji for 1 - i < j
- 4 under modelHs are 1.228. Since this value is greater
than one, we can say again that the left eye is better
than the right eye.

Analysis of Table 3
Table 6 presents the likelihood-ratio and the Pear-

son's chi-squared statistics obtained by applying various
kinds of symmetry models to the data in Table 3. The
value of test statistic Q in Stuart (2) for testing the
goodness of fit of model HM is 6.85 with 3 degrees of
freedom, and the value of test statistic XM32 in Tomizawa
(6) for testing the goodness of fit of the extended mar-
ginal homogeneity model HM3 is 4.16 with 2 degrees of
freedom. From these values and Table 6, all models fit
the data well. Moreover under model HQ the estimated
value of y obtained by maximum likelihood is 1.136 and
the maximum likelihood estimates of 8 under models
HM1 and HM2 are 0.871. We may consider these values
close upon one because models HQ, HMl, and HM2 hold.
Also the values of statistics for the goodness of fit of
models HS and HM1(1= 1, 2, 3) applied to Table 3 are
greater than those applied to Table 1 and 2; namely,
the goodness of fit of models HS and H;,(l = 1, 2, 3)
applied to Table 3 are not so good as those applied to
Table 1 and 2. By the way, models HS, HMl, HM2, and
HM applied to Table 1 and 2 did not fit the data well,
but those applied to Table 3 fit the data well. Therefore,
for the data in Table 3 we can say that the left eye is
symmetric to the right eye in the various senses.
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